Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy.

نویسندگان

  • Dustin D Armstrong
  • Karyn A Esser
چکیده

Beta-catenin is a transcriptional activator shown to regulate the embryonic, postnatal, and oncogenic growth of many tissues. In most research to date, beta-catenin activation has been the unique downstream function of the Wnt signaling pathway. However, in the heart, a Wnt-independent mechanism involving Akt-mediated phosphorylation of glycogen synthase kinase (GSK)-3beta was recently shown to activate beta-catenin and regulate cardiomyocyte growth. In this study, results have identified the activation of the Wnt/beta-catenin pathway during hypertrophy of mechanically overloaded skeletal muscle. Significant increases in beta-catenin were determined during skeletal muscle hypertrophy. In addition, the Wnt receptor, mFrizzled (mFzd)-1, the signaling mediator disheveled-1, and the transcriptional co-activator, lymphocyte enhancement factor (Lef)-1, are all increased during hypertrophy of the overloaded mouse plantaris muscle. Experiments also determined an increased association between GSK-3beta and the inhibitory frequently rearranged in advanced T cell-1 protein with no increase in GSK-3beta phosphorylation (Ser9). Finally, skeletal muscle overload resulted in increased nuclear beta-catenin/Lef-1 expression and induction of the transcriptional targets c-Myc, cyclin D1, and paired-like homeodomain transcription factor 2. Thus this study provides the first evidence that the Wnt signaling pathway induces beta-catenin/Lef-1 activation of growth-control genes during overload induced skeletal muscle hypertrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt/ -catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy

Armstrong, Dustin D., and Karyn A. Esser. Wnt/ -catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 289: C853–C859, 2005. First published May 11, 2005; doi:10.1152/ajpcell.00093.2005.— -Catenin is a transcriptional activator shown to regulate the embryonic, postnatal, and oncogenic growth of many tissues. In most resear...

متن کامل

تأثیر سه ماه تمرین هوازی بر مسیر پیام رسانی Wnt عضله‌ اسکلتی موش‌های صحرایی نر

Background: Atrophy in skeletal muscle plays an important role in disease-related tissue dysfunction such as sarcopenia. The Wnt-signaling pathway has been shown to be critical for skeletal muscle development. Current evidence suggests that exercise trainings may alter hypertrophy-related signaling in skeletal muscle. Therefore, the purpose of this study was investigating the effect of three mo...

متن کامل

Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy.

During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pa...

متن کامل

Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whet...

متن کامل

Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy.

The hypertrophic response of the heart has been recognized recently as the net result of activation of prohypertrophic and antihypertrophic pathways. Here we report the involvement of the Wnt/Frizzled pathway in the onset of cardiac hypertrophy development. Stimulation of the Wnt/Frizzled pathway activates the disheveled (Dvl) protein. Disheveled subsequently can inhibit glycogen synthase kinas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 289 4  شماره 

صفحات  -

تاریخ انتشار 2005